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STRESS INTENSITY FACTORS FOR PARALLEL CRACKS LYING CLOSE TOGETHER IN 
A PLANE REGION* 

S.A. NAZAROV and 0-R. POLYAKOVA 

The asymptotic form of the stress intensity factors (SIF) at the tips of 
parallel cracks of different length is determined. The relative 
distance separating the cracks is regarded as a small parameter. The 
interaction between two or several cracks has been the subject of a 
large number of investigations (see the reviews in /l, 21 etc.). 
Approximate formulas for the SIF are known for the case of cracks lying 
far apart from each other. The asymptotic formulas obtained in this 
paper relate to the opposite situation, in which the use of numerical 
methods in particular, meets with difficulties. Versions of the 
algorithms given in /3-5/ are used, and the results are expressed in 
terms of the solution of the problem of a single crack. 

1. Pormdation of the problem. Let Q be a region in the plane Ra containing a segment 
M={x: x2 = 0, I .Q I < a). We will write N, = {x : x2 = e, zI E I-b_, b+l} and use normal- 
izing methods to reduce the characteristic size of the region 52 to unity. The Cartesian 
coordinates and the quantities s, a, b* will then become dimensionless. We shall assume 
that the relative distance E between the cracks is a small parameter of the problem, while 
the numbers a, kb*, aF b+ and the distance between M and Xl are much greater than E. 
We shall consider the problem of the plane deformation of a homogeneous isotropic body weakened 
by parallel cracks M and NE, situated close to each other. Let there be no mass forces, let 
the crack edges be stress-free, and let the body be acted upon by an external, selfbalanced 
load p. The mathematical formulation of the problem is as follows: 

Z,(a/ax)ue(x)= yAue(x) + (h + u)grad divue(x) = 0, 
x=Q,=Q\,(MUN,) 

Is(") (uE;x) 1 p(x), xEac2 

G12 (le; x) = 022 (lc; x) = 0,. x~MuNe 

(1.1) 

(1.2) 

(1.3) 

Here h, p are the Lame coefficients, ue is the displacement vector, c (nE) is the 
stress tensor, n is the unit vector of the outer normal, and a@) = c.n. 

Since NoC M, it follows that the region &. is transformed, as e-to, into the 
region 9, with a single crack M;a, = Q\M. Let us denote by v" the solution of the 
corresponding problem 

L (a/ax) v” (x) = 0, x E Q,; IT(“) (v”; x) = p(x), XEbf.2 (1.4) 
cr2 (v";x) = $2 (v";x) = 0, x E M (1.5) 

Near the ends of the crack M the vector v0 can be represented in the form 

v"(x) = Cf + r2(K,*@'(e*) + &*@a@*))+ O(r*), r**O 

(@; (e), Q'e' (e)) = (410-l (2n)-"2 ([2x - 11 cosv,e - cos~/,0, 
sin 3/,8 - [2x + 11 sin r/,8) 

(1.8) 

(Qra (8), De2 (8)) = (4n)-' (2n)-"* (3sin 3/28 - [2x - 11 sin 1/,8, 
3cos31,e - [2x + I] cos '/,8) 

x = (h + 3~) (h + IL)-1, 8, E (4, Z) (4.7) 

Here cf is a constant vector, (r*, 8,) are polar coordinates with centre at the point 
(z&O) and the polar axis is directed along M;K,* is the SIF. 

Representations analogous to (1.6) hold for the field us, and we denote the correspond- 
ing SIF by K,* (E). In addition, let kj* (e) be the SIF at the tip of the crack N,. 

Below we shall find useful the representations of the field v3 near the points (&b&,0),, 
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which should also be regarded as singular by virtue of the structure of the boundary of the 
initial region a& 

v"(x)=j~~zu~u~(Y)+O(IYIs) (Y=("r--+,%)) 

UK(y) -_ e', loti+ = vi@+, + 0) (k = 1,2) 

US(Y) =(-VW Yl), U4 (Y) = [4tL(h + Y)l-'((h + WY,* - A&) 
G?s+ = 'is (&(b+, + 0) - G,,(b+, + O)), Z,,+ = an(v";b+, f 0) 

Us (y) = [Sk (h + p)l-l [A + 2~1 (Q,y,, --YI’ - 1 [A + 21”1-’ ~,2) 
UB (y) = [8~ (h.+ p)l-’ (h + 2pl Y,’ - 13h + 4~1 ~2'3 --2hy,y,) 

I+= 05 uur2 (v"; b,, + O), L,,+ = on1 0"; b+, i-0) 

(1.8) 

(1.9) 

The index k following the comma denotes differentiation with respect to zk. We have the 
same formulas for the point (-b_,O) and Y = (x1 + b_, z,), while the coefficients of linear 
combination of the form (1.8) are denoted by l?,j-. 

The aim of this paper is to determine the asymptotic form of the solution ue of 
problem (l.l)-(1.3) as &+O, and of the asymptotic form of the corresponding SIF. 

2. The asymptotic form of the solution atay from the crack S,. The vector v0 satisfies 
system (1.1) and boundary conditions (1.21, but leaves a discrepancy in conditions (1.3) at 
the edges Ne+ of the crack NE. Expanding the stresses oi2 (vo) in a Maclaurin's series in 
the variables x2, we can represent the above error in the form 

uJ2 (V”; Xlr 8) = &UjZ (V.2’; Zlr +0) + ‘/,&‘0j, (vY*2i Z1 + 0) + 0 (E3) (2.1) 
z,~ L-b_, b+l, j = 1, 2 

Thus the principal term of the discrepancy (2.1) can be compensated with the help of the 
vector function avl, satisfying the equations 

L(a/ax)v'(x) = 0, XEQ& a(n)(vl;X) = 0, xEaS2 (2.2) 

(Jjz (v’; x, = 4j* (x)9 XEM*, j=1,2 

The load qf is found from the relations 

q- (x1) = 0, 1 q 1 < a; q+ (q) = 0, zI E [--a, -b_l L; [b,, al (2.3) 
4j+ (x1) = -oj* (V,,“; Zlr +O), .q E I-b-, b+l (2.4) 

Taking relations (1.1) and (1.3) into account, we conclude that the principal vector and 
moment of the load (2.3), (2.4) are given by the formulas 

alI (v”; b,, + 0) - 01~ (v”; - b-7 + 0); T21 = 0, R’=O 

According to (2.51, the load (2.31, (2.4) is in general non-selfbalanced. Therefore 
problem (2.2) has no solution possessing a finite elastic energy. If we extend the class of 
solutions to admit vectors with singularities of the order of 0 (In 1 x -P* I-‘) at the ends 
P* =(fb+I,O) of the segment NO, then problem (2.2) will become solvable and the solution 
will not be unique. Indeed, the class is extended on account of the addition, at the points 
p+, of unknown concentrated forces T*, which balance the action of the load (2.3), (2.4). 
However, a solution V' exists of the problem of the deformation of a region Sr, by con- 
centrated forces T* = (kl,O) (their principal vector and principal moment are both equal 
to zero), i.e. the choice of the components Tj* is not unique. Thus we should take, as a 
solution of problem (2.2), the sum 

"1 ="I0 + $'V' (2.6) 

Here P is a solution of problem (2.2) with the forces 'P = T- = r/*T1 concentrated 

at the points P* and cl1 is a constant to be determined. (In (2.6) and in what follows, 
the rigid displacements QO and Q, are not considered). 

Following /6/ we find that the vector function (2.6) can be represented as follows near 
the point (b,, +O): 
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~1 (x) = i zlj+uj (9) + Z15+P (y) + z,,+rl (Y) + 0 (1 Y I* In I y I) 

r,l (r, 0) = --(t’,)-+ {ln r (cos 20 + 1/z(x - 1)) - 0 sin 20 - 1/1 (x + 1)) 
rel (r, 0) = (27~~)~1 r {In r sin 28 4 e cos 28 - v,e (x + f)} 

(2.7) 

(2.8) 

Here S(1) is the first column of the Somigliana tensor, (r,e) are polar coordinates 

corresponding to y; lllc are certain constants calculated from formulas analogous to (l-9), 
the coefficient &+ and the similar coefficient 115 have the following form when expanded 

near (-A-, 0): 
llf = l/J, f cl1 P-9) 

Let US now construct the next term a2v2 of the asymptotic form of the vector ue. By 
virtue of (2.1) and of the similar formula for VI we find that va satisfies (2.2) in which 
the load g* is determined by (2.3), and 

Q~+(z,) = - ~ia(vta; or + O)-'/zUj, (VP,; ~1, t- O), 51 E[- b-9 b+] (2.10) 

According to (2.7) the quantity (2.10) has singularities of the order of 1~1 T bi 1-l. 
This implies that problem (2.2) for v2 should also be solved in the class of vector func-- 
tions with singularities at the points P*. It will be shown below that it is necessary to 
allow the singularity O(l x - P* 1 x 1111 1 x - PfII). The solutions belonging to this class are 
determined with an accuracy up to a linear combination of three vectors. These are, firstly, 
the solution V1 introduced above, and secondly the solutions Va and V3 of the problem with 
concentrated forces T+ =(0,&l) and moments R+ = -_(A+ f A_), R- = 0 or R+ = 0, R- z 

-(A+ + A_), respectively. Thus 
\.2 = v20 + $lV' + c22V2 _+ c2JVY (2.11) 

Here c2j are constants to be determined. Using the results of /6/, we choose the sol- 
ution v*O so that the asymptotic form of the sum (2.11) has the following form: 

v2 (y) = l,o+s@) (y) + I,,+W (Y) + h,+uz (Y) + Li+S(l) (Y) + h,+S@) (Y) + 

b,+r2 (y) + &,+r (Y) + 0 ( I Y I (ln I Y I )a) 
sw = [-4p~-~ {In r [I f xl (~0s 8, -sin 0) i- [X - 11 e (sin 8, cos e) - 

2 (0, sin 8)) 

(2.12) 

s(z) = [---4pnl-1 {ln r [I + x1 (sin 8, cos e) i- [I - XI 8 (cos 8, 
- sin e) + 2 (0, cos e)) 

So) = [4punrl-1 ([I + x] sin 28, Ix - 11 cos 28 + 2) 

(r,z (r, e), re” (r, e)) = [4p~~l-~([l + xl [Wr + 2x-l In r - eai. 
tcOs 8, - sin e) + 28 [ln r i- x-l + II (sin e, ~0s e) + (0, 48 cos 8 - 

4 [In r + ?c-‘I sin 0)) 

(2,13) 

(r,” (r, e), I’e’(r, e)) = [2pLnW1{ln~r ([I + xl cos 28, [I - XI sin 2e) f 
e ([I + xl sin 28 IX - 11 cos 28) _t (1, -2x[1 + ~$1 sin 28)) 

Below we shall find it useful to use the following formulas for the coefficients 1 20+, 25 > 1 + 
1+ 24 and for the analogous coefficients in the expansion of v2 near (-A_, 0): 

lz3* = ll,T,= f P, l,,$ = ‘l,Tz2 j= c=a 1~23 (2.14) 
I?,+ = R2 - ‘lzT> (b, + b_) - es3 (b, + b-), l,,- = 1/,T,2 (b, + b_) - 

cza (b, + b-) 

Let us determine the unknown T12, T,*, R2 in (2.14) using the method given in /7/. We 
denote by Q(A) the region 52, from which the sets {x: Ix-P* I< 6, rz> 0) have been 
removed, and substitute into the Betti formula for the region Q(6) the vectors va and el, 
e', (-I~, x1). Taking (2.10), (2.12) and (2.4) into account, ’ applying a transformation similar 
to (2.5) and passing to the limit as 6 +O, we obtain the following relations: 

0 = n-1 (2x-l - 1) (lo,+ - I,,-) + v, (l,,f - &) - (I,,+ + I,,-) (2.i5) 

0 = ‘i, (ha+ - G) - (&A’ + I,,_) 

0 = ‘I, (b, + b-) lo,+ - l/z (&+ - L,-) -_ I,,’ (b, + b_) - (Z2,,+ + I,,-) 
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From (2.5) and (2.14) we obtain 

Z'ra = --n-r (1 - 2x-l) (lue+ - lee-) + I/, (Zo5+ - &), T,* = 

‘I, (1 NJ+ - lo,-) 
R2 = ‘i, (zag+ + loa-) (b, + 6) - ‘/zTll 

3. The boundary Zayer near the points P*. We have obtained in Sect.2 the first terms 
of the asymptotic solution of problem (l-1)-(1.3) away from the crack N,. A boundary layer 
appears near the tips of the crack N,. Since the problem is symmetrical, it is sufficient to 
consider only the right-hand tip. Let us write (1.1) and (1.3) in "rapid" variables E1 = E-1 

(11 - b,), E? = e-% and put E = 0. The region Q2,+ = {z E 62,:x, >0} will be transformed 

into a half-plane R+' with a ray E = {: : g* = 1, E1 g 01, cut away, and problem (l.l), 
(1.3) will become 

L(a/c3QZ(:)=O, ZER+~\~; crj2(Z;;)=0, !,E~R+~IJE, j=1,2 (3.1) 

The set R+2\ B has two "exits" to infinity, one in the form of an angle, and the 
other in the form of a half-strip. We shall indicate the solutions of problem (3.1) which 
show, at infinity, not more than a logarithmic growth in the angle, and not more than a power 
growth in the half-strip. According to the general results /b-0/ there are precisely five 
linearly independent solutions of this type. Two of them are trivial: Zj (5) = ej, j = 1, 2 
are the rigid translational displacements with unit vectors in Ra. The three remaining ones 
correspond to transverse and longitudinal forces and a moment,applied at infinity in the half- 
strip, and they have the following asymptotic form: 

zs (5) = - ‘I,,D-‘y(l*‘) (5) - 1/,D-'Y@v2) (5) + m, (- t2, El) + 0 (1) 

Z4(9 = D-'y@* 3'(8) + m2(- g,,&) + 0 (1) 
Zb(Q = - D_'Y'2' a) (g) + m3(-Ez9 5J + O(1) 

z9(~)=S"'(6)+~(g)+o(I%l~a); 2~(5)=s(2)(~)+o(I%(-a) 
zb(g)=S'o'(6)+O(I~l-a); D=[3@+2p)]-1(h+p)p 

Yci* k, (6) = ji (j!)-l &jXfi* k-j) (E2); i =1,2; k=0,1,...,28-1 

(3.2) 

X”’ ‘) (E,) = el, X@’ ‘) (&) = I?, X", ” (EJ = --(h + 2fr)-lh(g, - lj2)ea 

X@, "(Ez) = - (E2 - r/,)el, X@, "&) = [2(h + 2p)]-rh ((Es -1/e)a - r/d e2 

Xczz 3’(Sa) = [6@ + +)1-r ((3h + 4!.9(Ez -- r/J3 --Va (Ilk f 1%) (Ez-'/,)l er 

(3.3) 

(3.4) 

In (3.2) &-+--CO,&<I, while in (3.3) It I--f CO,&> i;mi are constants and S(j) are 
columns in (2.13). 

If we allow the linear growth of solutions in the angle, then another two vectors Us and 
U4 will appear, satisfying the homogeneous problem (3.1). Passing to the quadratic growth 
produces two new solutions. One of these solutions will be the vector Us, and the other sol- 
ution has the following asymptotic form: 

~~~~~=~~~b~+r~~~~-i-~~(5)+o(l~l-~(~nlbl)~)(~z>~~I~l~~) (3.5) 

The expansion of Z6 at infinity in the half-strip contains a linear combination of 
vectors (3.4). In what follows we shall only use the coefficient accompanying the term yV,y) 
The coefficient is found by applying the Betti formula in the region 

(SER+~\~:(~I<R}U{~:O<E~<~,O>~,>--R) 

for the vectors Z6 and e2 (see /7/ and analogous arguments in /5/). Calculating the 
contour integrals with help of the asymptotic representation of Ze and passing to the limit 
as R+m, we obtain the asymptotic form 

ZB(~)=--'~zD-'Y'2*3'(j)+0(~~1(2) (El--+--to<&<i) (3.6) 

Let us obtain the first three terms of the expansion in the boundary layer 

US (x) - z"+ (:) f &z'* (5) f 9za+ (5), I y I < 2E”a (3.7) 

Taking into account the conditions of matching this representation with the expansion 
~~~',~,';,~)~~~~~t~o~~z(x) at Iy I>r/#', we obtain, from (3.3), (3.5) and (1.8), (2.7) 



Z”+ (6) = Zol+el $ Z,,+e2, z’+ (5) = z,,+u* (5) + z,,+u4 (E) + 4,+zs (9 + 
(zI1+ + z,,+(4p~)-~(l + x) lne)el + Zl,+ea + Z,,+Z'(B 

P+(g) = z,,+U6(g) + zoa+Z'(5) + z,,+V(:) + (Z,*+-Z1,,+2n-'InE) u"(g) + 
(Zz$+ 1,,+2n- lnE)z3(Q+ Z24+Z4(Q$ ((Ze3+f 2(nx)-1Z,,+)(4Pn)-1(I+x)x 
Ine + I,,++ Z,,+(4pna)-1(1 + x)In*e)f++ (Zt2+ f Z,,+(4pn)-'(l + X))e'+... 
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(3.8) 

Here the repeated dots denote the term const 26, and the constant can be found only 
after obtaining the solution vyO (in exactly the same manner the constant ZzO+, appearing 
in the expansion of P occurs in the boundary layer Z’+, see also Sect.7 below). It will 
be shown that this consCant has no significant effect on the SIF, and the above statement 
applies with equal force to many other terms from (3.81, and in particular to terms which con- 
tain In E. Formulas analogous to (3.8) hold for the boundary layer Z"-+&Z1-+E~Ze-+..., 
corresponding to the point (--b-,0). 

4. The asymptotic form of the solution in a thin strip. Using the well-known algorithm 
for constructing the asymptotic solutions of elliptical problems in thin regions (/4, 10, 9/ 
et al), we shall write the solution ue (x) on the set (-b_, b,) X (0, E) in the form 

ue (4 - ,S, ej (wj (xl) + eWj (x3. t)), 5 = e-1x2 (4.1) 

In what follows, we shall make use of the first few terms of the series, namely of 

w1-l (4 = 0, wz-1 (4 = w, (Xl), Wl" (4 = Wl (4 (4.2) 

w-1 (zl, 5) = @zL@zl) X(%1) (C), W" (Zl, 5) = (awl/azl)x~~~~~ (5) + 
(a%0zlr3xl~)X(%~) (Q, W'(q, 6) = (@w,/azlq X(V) (5) 

We have omitted from (4.2) the terms which depend on the components of the functions wZo, 

Q? wj* (they can also be expressed in terms of the elements of the Jordan chains (3.4)) and 
the function wj satisfies the relations 

(azw,/azla)(z,) = 0, (tiQ%r14)(zl) = 0, xl E (--b-q b,) (4.3) 

The expansion (4.1) must be combined with the solutions of the boundary layer-type con- 
structed in Sect.3. According to (3.2), (3.6)-(3.8) the foll owing formulas hold for El< 2s'la, 
O<gZ<e: 

z* (g)i+ t-zl+ (5) + E2z2+ (5) = &l+el + &+U4 (g) + 

El,,+ (- (120)-l Y (*, “(F_) -(20)-l Y@. 2'(F)) + EzZO+(- D)_' Y@. 2'(5) + 

eaY@, 3'(~)(-(2D)-1Z0a+ + D-'Zac) + . . . 

The repeated dots denote the terms in the asymptotic form which are disregarded when 
considering the terms w, and w2 in (4.1). 

Using the formula IJ4 =(12D)-'YC',') in relation (4.2) we conclude that for the asymptotic 
representations (4.1) and (3.7) to be identical in the intermediate zone E1 = 0 (e-'/v) (or 
z1 = b, + 0 (e”‘)) , the following relations must hold: 

w, (b,) = 0, (~w,/c?x,)(b+) = 0 (Pw21~xla)(b+) = -D-l (VBZ15+ + ho+) 
(Pwz/i3x13)(b+) = D-’ (Zz4+- ‘lzZo6+); w, (b,) = Z,,+ (cYwl/~xl)(b+) = 

(12D)-'(Zd - 46') 

(4.4) 

Considering now the boundary layer corresponding to the point (-b_, 0), we obtain 

wa t-b_) = 0 @w,iax,)(-b_) = 0 (@w@xla)(-b_) = D-1 (‘laZls- + Z,,-) 
(@w@~~Y)(-b._) = -D-l (Zz4- + V2Z,,-); w, (-b_) = 

Z,,-, (%laxJ(-b-) = (12D)-'(Z,,- + I,,-) 

(4.5) 

We have, in formulas (4.4) and (4.5), the Dirichlet data at the point xl = &be for Eq. 
(4.3). Solving the boundary value problems we find, that 

w, (x) = (b, + b-)-'(u,'(b+, + 0) - v," (-b-9 + O))(xl - b,) + v," (b,, O), w, = 0 (4.6) 
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The remaining six equations in (4.4) and (4.5) comprise a system of linear algebraic 

equations for determining the unknown constants cn, c22, c%Y from the representations (2.9) 
and (2.14). We find that by virtue of (2.15) this overdefined system has the solution 

cn = '/z (011 (v"; b,, + 0) + (~11 (v”; - b_, + 0)) - (4.7) 
12D(b+ + b_)-l(u,o(b+, + 0) -v; (- b-3 + 0)) 

cz2 = r/5 (nil, 1 (vO; b,, + 0) - oI1 1 (v’; - b-7 + 0)) - liz (b, + b-)-l x 

[l2D (b, + b_)-’ (o,o (b,, + 0) ‘- vlo (- b_, + 0)) - 011 (v”; - b-7 + O)], 

cas = ‘/.p~~~, 1 (v”; - b_, + 0) - liz (b, + b_)-’ [I20 (b, + b-)-l (VP (b,, + 0) - 

vlo (-- b_, + 0)) - ~11(v”, - b-t + O)] 

Thus the vectors (2.6), (2.11) and (3.7) as well as the principal terms of the series 
(4.1) are all completely determined. 

5. The asymptotic form of the SIP. The asymptotic form of the solution of problem (l.l)- 
(1.3) obtained in the previous section enables us, as in /4, 5, 11, 12/, to find the SIF of 
K,* (E) and kj* (E) at the tips of the cracks M and N,. Since outside the neighbourhood of 
the crack N, the solution of the initial problem can be written in the form v'(x) i- evl(x) + 
. . . (see Sect.2), it follows that 

KS* (e) = Kj* $- E (Kj,l* $ c”F$) + O (c2), j = 1, 2 (5.1) 

Here K$ (e), Kj*, K& and Fj* are the coefficients of r+'f* in expansions of the 

fields ue, v", vol and V1, of the form (1.6), and the constant cl1 is given by (4.7). 
‘According to Sect.3 the field ue (x) is asymptotically equal, in a small neighbourhood 

of the point Pi, to the sum z”’ (E) + &Z’+ (5, h E) + . . . . Analysing formulas (3.8) for the 
vector functions Z”+ and Z’+ we conclude that Zl,+Zy (5) and 1,,+Z6 (5) are the only terms 
which are not smooth. 

The special solutions Zk (k = 3,4,5) near the tips of the cut B can be represented 
in the form 

zh(~)=ek+~"s(Fk,~~1((P)+Fk,2~a((P))+O(P)~ P+U (5.2) 

Here ck is a constant vector, (p,rp) are polar coordinates with centre at the tip of 
the ray E, and the edges of S are given by the equations cp=,n. Explicit expressions 
for the SIF were obtained in /13/ in expansions (5.2) of the special solutions zy - 26, Z4,Z6 
of the homogeneous problem (3.1). Using the notation adopted in /13/, we can write the 
vectors F, = (Fkl,Fk2) in the form 

F, =KT +llzK~, F, = KN, F, =K, (5.3) 

KM z (1.932, -1.506), KT 'c (0.4346, 0.05578), KN ~(1.951, 0.032) 

Thus, according to (5.2), (5.3) and (2.9), (2.14) and (4.7) we have 

kjf(e) = fe’l~(12D(~~~(b+, + 0) - vl”(- b_, + O))(b+ + b_)-’ - 

oll (v”; i b+, + O)(Faj* - llzFaj*) + 0 ($12 ) In E 1 ), Fk* = (+ .F'kl, fkz) 

(k = 3. 5) 

(5.4) 

The principal terms of the asymptotic form of kj* (8) in (5.4) is expressed by the sol- 
ution of the problem (1.4), (1.5) in the region with a single crack. This makes it possible 
to determine, in many problems, the SIF at the tips of the smaller crack N, without additional 
computations. We stress that the beam approximation in the theory of cracks (/14, 15/ et al.) 
or the Cherepanov-Rice integral (/14, 17, 16/) etal.) make it possible for the problems in 
canonical domains to find the sum I*(e)= k,* (8)” +k**(~)~, while kl* (e) and kf (8) cannot be 
determined separately in this manner. According to (5.3) and (5.4), k,* (e) k,* @)-I 5 0.779, 

therefore the values of ko* (e) are obtained from I*(e) (apart from the sign). 

6. ExumpZes. 1". Let us consider the plane Q= R2 with cracks M and N,, under a uni- 
axial tension of intensity p",applied at an angle a to the z1 axis. Using the explicit sol- 
ution of the problem of a plane with a single crack /18/, we can write formulas (5.4) for the 
SIF at the tips of the cracks N, in the following specific form: 

klf (8) - e”‘.Zp,, (F,,* - ‘@,j*) (-fB-’ (A+R+ - Ad-) - by%&) (‘3.1) 

B=b + + b_, R* = (a ‘f b+)“:, A+ = (a t b*)““, pse = p” sin a cos a 
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Moreover, in (2.4) ql+ (z~) = --2p& (~9 - z1 ) a -"I. I 9,+ (21) = 0, and this means that according to 

the integral representation of the SIF /18/ formula (5.1) will take the form 

K,* (E) - p” sin" a @a)"*, KS* (e) - psc ((na) 
‘1. _ ‘/,e (na)l-“‘G*) 

G+ = In (A+R_A_-%+-I + aB (2 (R+RJ2) - (A+A_R+R_)-') + X3-l (R+S-)-'H) 
G- = In (A+R+A_-'II_-') + UE (2 (a+&)-1 - (A+LR+R_)-') - 2S-' (-%A-)-'H) 

H = (AC2 + A_%) H+R_ - (R+2 + R_? A+A- 

(6.2) 

20. The asymptotic analysis carried out in the previous sections can also be applied 
to the problem of a plane with a semi-infinite cut M= (z E Ra :za= O,z~zlaa) and a finite crack 

N,. Let the loading be applied in such a manner that the solution ue will have the follow- 
ing asymptotic form at infinity: 

US(x)= rv* (C,W(ll) + @W(Q) + 0 (r-l") (1. + m) (6.3) 

Here (r, 6) are: polar coordinates with centre (a, 0), @j are the angular parts of (1.7), 
and C, and C, are load parameters. In other words, we shall consider a large crack with a 
small crack N, situated near its tip. In this case v" will be indentical with the ex- 
pression singled out in (6.3), and according to (5.4) and (5.1) we shall have 

kj* (E) - T ,‘I* 2Cz (Zn)-“* (F,,* - ‘/zFSj*) (I?*+ + 28-l (R, - R_)) 

KI+ (e) - C,, Kz+ (e) - C, + 2~C,n-‘B-‘R+-‘R--l (R, + R_)% 

3". The method of computing SIF can also be used in the case of a crack situated at a 
short distance from the boundary. We shall consider, as an example, the problem of the action 
of concentrated normal force Q on the half-plane D = (x:9& > 0) (we assume that bf>O and 
that the force is applied at the point x== 0). Since we assumed earlier that the crack edges 

are stress-free, it follows that the algorithm given in Sect.2 and 3 needs some modification. 
We will seek the asymptotic form of the solution in the thin strip (--b-y b,) x (0,e) in the form 

Here 8 is the Heaviside function and repeated dots denote unimportant terms. The 
boundary layers Z* near P* are given by the formulas 

Z* (5) = e-'m~(&b*)U~(E)+ e-a(&u,/$)(tb*) V(g)+ ~-~(d~wz/~Q) (rf:b*)Z"(Q+ (6.5) 
(a3wz/a513)(*b*)Z4(~) 

From the matching condition it follows that the first coefficient in the representation 
U' (x) - e-3vo(x) + e-V (x) + e-W (x) + ~3 (x) of the solution away from the crack satisfies the 
relation v"(fb*) = q(+b+), i.e. v’) is a rigid displacement which can be made equal to zero. 
Similarly, v1 (&b+)= (&o,/&q)(Jrb+) = 0. The constants ~1 in (6.4) are found from the conditions 
indicated, and have the form 

y0 = ‘/syb+Sb_3, y1 = ‘/zyb+2b_2 (b, - b_), yz = --yb+2b_a 

ye = --‘:eyb+a (b, + 3b_), y = QD-’ (b, + b_)+ 

(6.6) 

Thus, in accordinace with (6.4), (6.5) and (5.2), the SIF at the tips of the crack 
are given by 

N, 

kj* (e) = e-“‘%y (b+ + b_) b*bT’F,j + 0 (E-‘/‘) (6.7) 

40. In the cases when a = Vsn or c*=o, the asymptotic formulas (6.1) or (6.4) take 
the form kj*(q= O(glz) and become lacking in content (when a=O, the terms of the asymptotic 
form separated in (6.1) and (6.2) also vanish as the loading takes place along the cracks and 
all SIF are equal to zero). Both situations tare characterized by the fact that al,(vo)= o at 
the edges of the crack M. If we construct the next term of the asymptotic form of the solution 
Ire (X)' (see Sect.7), the asymptotic form of the SIF at the tips of the crack N, will take 
the following form for the problems discussed in 1" and 2" respectively: 

k,* (e) - Fe“? (a2 (A*R*)-3F,j * - (‘/& (A*R+)-3 + BV (A+R+ - A-R-) + 

‘/,B-’ (fb* (A*R_$l + b+ (A+R+)-’ - b- (A-RJ-‘)F& 

ki* (e) - + e”’ ‘/rC1 (2n)-“2 (R+-3Fsl* - (‘/sR+-3 T 6~’ (R+ - R_))F,j*) 

(6.8) 
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7. Asymptotic form of the sotution in a special case. We shall assume that orl(vO) = 0 
on M,. Then, in accordance with (2.2)) qj+ = -ajz, 2 (v’) = crj,, 1 (v”) = 0, i.e. the solution vr 
of problem (2.2) will represent a rigid displacement which can be assumed equal to zero. Let 
us change the upper limit of summation in (1.8) to 8, and 

The right-hand sides of the boundary conditions in problem (2.2) are determined, for the 
vector function vz, by formulas (2.3) and Qf (x1) = '/zOrj,r2 (v"; .rr, +O), rr 6? I---b_, b+l. Relations 
(2.6) and (2.9) in which the index 1 must be replaced by 2 hold, as well as the representation 

4 
v*(x) = s z,~+u"(~) + I~~+s(~) (y) + z,,+r~(~) - l,?+r3(y) i=l 

(r,Y (r, 8), re" (r, 6)) = -r J4~~nJ-r{ln r [1 +x1(0, 1) - 
[x - 11 8 (1, 0) + 2x Jx - IJ-'(0, 1) f (sin 28, cos 28)} 

Relations (2.11) and (2.12) hold for the vector ~3 (with the corresponding change of 
the indices from 1, 2 to 2, 3). We note that the relations ajj(vO;rl, +O) = 0 yield the 
formulas vi.1 (51. +O) = 0 and z,1+ = I,,_. 

The expansion of the solution of the problem in a thin strip has the form (4.1), and 

w-1 (X1) = 0, wlo (zl) = 0, wz" (Zl) = W18 + tzzl* + Ql + t, 

t, = B-a (103+ + 1,,-) - 2B-Y (&+ - I,,-), t, = ‘lzB-’ (Zo3+ - 
kl,a - yi, (b, - b_) t, 

The coefficients of expansion in the boundary layer are 

2” (5) = Z,,fel + Zo2*e2, z’* (5) = 103*Uy(5), z2* (E) = &,*u5 (E) + 

125*z3 (9 + &ofZ6 (9, z3* (5) = $,fZ’ (E) + Los* Z” (E) + Z3,fZk (6) 

Here Z7 and Zs are the solutions of the homogeneous problem (3.1) determined over the 
vector fields U' and UB (see (7.1)), just like the solution ZB over U6. 

As a result we obtain the following representation for SIF: 

/cjf (E) z &‘/z (Z25ff+‘:,j* f Z,,*F,j*) f 0 (E”* 1 III E ( ) 
zljf = & ‘/zol~, z.(vO; i_ b,, + 0); Z30* = f ‘/‘~AI, 3 (v”; t b + 0) + 

D(b++ b_)-2(6(v,“(+ b,, + 0) - v,“(-b-,+0))-(b++b_)(v;l,,(j_brt, +0) - 
0 

~1, 2 (+ b*, + 0) + L’;, 1 (b,, + 0) - u;, 2 (b,, + 0) + 6 I (- b-1 + (8 - 
L’;, 2 (- b-t + 0)) 

Specification of the asymptotic equations leads to representation (6.8). 
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EXTRE~AL CRITERIA OF TNE STABILITY OF PERTAIN ~OTI~~S* 

1.1. BLEKHMAN and O.Z. MALAKHOVA 

The so-called extremal criteria of the stability of certain types of 
motion were formulated in a number of publications /I, 3, 4, 7-10, 13, 

16, 23-25, 31-34, 36-40, 44/. However, until now, the connection 
between these criteria has not been discussed, nor the problem of the 
possibility of extending them to embrace the wider classes of systems and 
motions considered. In a number of cases it might be found that the 
results of various investigations are contradictory. 

In this connection the present paper combines a comparative survey 
of the work dealing with extremal criteria of stability, with a 
derivation (in cases when it was not already done) of the criteria in 
question in a unique manner, using the Poincare-Lyapunov small-parameter 
method. It should be noted that the same results can be obtained, under 
somewhat different assumptions, 
motions. 

by the method of direct separation of 
Three classes of systems are specified for which the extremal 

criteria of stability have been 
present time. 

successfully established up to the 
The basic results are given in the form of theorems. The 

applications of extremal criteria to the problem of deriving a general 
justification for the tendency for certain classes of weakly connected 
dynamic objects to synchronize, to the problems of designing new 
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